
The number one reliability driver of today’s system problems
Dr. Samuel Keene, FIEEE

s.keene@ieee.org

Consistently, the largest Pareto significant software and system problem lies with
“requirements” deficiencies. First, it must be recognized that the customer who wants the
product has an immature or imperfect notion of what is truly desired. The customer
knows the main points of the desired product but has not realized the “totality of
requirements”. Then, the customer issues these imperfect requirements for the developer
to interpret. Limitations of the natural language clarity represent another hazard to the
perfect understanding of requirements.

In the 1990’s, two contractors independently coded safety-critical code for the Canadian
Darlington nuclear reactor. This code forced the reactor to go into a safe mode when the
reactor coolant fell below a specified level. The coolant level was in a constant state of
variation. There was interpretation ambiguity facing the contractors as to whether this
contingent action was to take place when the mean, mode, or the median coolant level
was used to trigger the action. It was later discovered that both contractors made the
same misinterpretation. This ambiguity was subsequently corrected by mathematically
stating the control invoking condition. This made the triggering condition explicit
without relying on individual’s interpretation of a natural language statement.

Requirements are always a big challenge. Brendan Murphy reported that the
preponderance of system reliability problems stem from “System Management”
deficiencies [1]. These are deficiencies resulting from incomplete requirements or
interface definition. He published this finding a decade ago based upon over 2,000
Digital systems operating in Europe. He has related to me in the past year that this
observation still holds on other systems that he is now tracking in Europe. The additional
component that this author adds to System Management focus it the managing of product
changes or product evolution. Changes degrade the product architecture and increase the
system complexity. Maintaining situational awareness and design focus while
introducing product changes is a special challenge for requirements management.

Managing Requirements

The Kano diagram depicts three levels of requirements:
• Delighters- which the customer did not expect but loves
• Satisfiers – which meet his specified needs
• Musts - often unspoken and not even realized until they are not met

The “delighters” are features that the customer did not specify, or even think of, but likes
a lot. These can differentiate a product. A compass on rear view mirrors was an
unexpected “delighter”. Once introduced, these delighters cause the customer to demand
them on future products. The compass became a specified “satisfier” to some customers..
Some believe that the “must have” requirements are those basic things needed to make
the product work. This author feels that the “must have” are assumed capabilities. They

do not even have to be stated and are only noticed in their absence. Example would be a
home sold in my area that did not have heat on the second floor. The buyer discovered
this in the wintertime. He had assumed heat ducting would have been provided to all
rooms. This lack was a surprise “dissatisifier”.

Kano Diagram

The “must haves” requirements often lie in the infrastructure. Again these requirements
are typically noticed in their absence. The author heard a recent example that likened
oxygen to our infrastructure. We assume it is always present and always will be present.
In its absence, we recognize quickly that it is a “must be” requirement.

There are two venues to collect initial requirements. First the customer/users can be
directly asked. They identify their product needs. These typically center on their early
thoughts on performance, quality and cost. These needs are given independently,
whereas there are trade offs to be made, to reach an optimum balance. Typically these
stated needs are the Kano “Satisfiers”. The more they are satisfied, the better the
customer feels about them, ie., the faster the response time of a device, the greater the
satisfaction of the customer.

The more proactive developer will also actively seek “Context Data” about the customer
needs. These are the indirect comments provided by the potential customers. These
comments might be mined from help desk comments made on the present product. It
might be product complaints that have been received. This is the data that can be mined
to find “unstated requirements”. These requirements have the potential to “delight” the
customer, and successfully differentiate your product and raise the perceived quality of

your delivered product. Quality is the customer’s perception of your product
benchmarked against the customer expectation.

A leading computer manufacturer routinely invited some of its leading edge customers to
participate in week long seminars. These customers were put up in a hotel and spanned
different customer areas, e.g., food industry, automotive, consumer products. The host
computer company provided facilitators to promote discussion. The facilitators would
put out seed topics for general discussion such as “Managing accounts receivables”. The
listen for “best practices” or “challenges” these companies were facing. The facilitators
would keep the ideas flowing and note themselves development opportunities whereby
their products can better serve their customers. At the same time all the participants had
the opportunity to learn from each other. It was an energized, “win-win” interchange for
all.

I recently asked a successful realtor in San Diego, what she did to be so successful. Her
response, “I listen to what the customers don’t say”. She was collecting “context data” to
particularly find the customer delighters’.

So our challenge is to engage the customer to mutually help discover and communicate
product requirements. Requirements are a discovery challenge for the customer as well
as the developer. The customer is the “C” – the end customer, and the “c” – all the down
stream functions in the developers organization that interact and help deliver the final
product. The “c’ includes the documentation group, service and test personnel and so
forth. Six Sigma does provide a number of tools for cross group requirements discovery,
ranking, cross-functional discussion and requirements capture. That topic will be
elaborated on in a sequel article to this one..

1. B. Murphy, and T. Gent, “Measuring System and Software Reliability Using an
Automated Data Collection Process”, Quality and Reliability Engineering
International, CCC 0748-8017/95/050341-13pp., 1995.

